

Wharton Customer Analytics Datathon

February 5, 2021

Omar Nunez (W'21), Rachel Levin (W'21), and Alana Levin (W'21)

The Team

Three Wharton seniors who love all things data

Omar Nunez

- Wharton '21
- Majors: Statistics & Finance
- Fingagement Manager for MBAs & UGs @ Venture Lab

Rachel Levin

- Wharton '21
- Majors: Statistics & Finance
- Minor: Math
- President of Wharton UGR Data Analytics Club
- TA for STAT 471, OIDD 101

Alana Levin

- Wharton '21
- Majors: Finance and Public Policy
- President of Wharton Global Research & Consulting

Executive Summary

We explored a variety of modeling techniques to extract insights from Essity's Tork data sets

- Theme: Claims and Product
- Data Exploration
- Prediction methodologies:
 - Stepwise / Multiple Linear Regression
 - Elastic Net
 - Classification Tree
- Recommendation

Project Motivation

Reduce number of times when dispenser is both out-of-stock and consumers expect it to be stocked

Service time **5** is a random variable Assume **5** independent of consumption velocity

High-traffic days may cause dispensers to run out of stock when people need them the most

Project Motivation

Reduce number of times when dispenser is unnecessarily stocked

Service time **s** is a random variable Assume **s** independent of consumption velocity

During low-traffic days, stocked dispensers are inefficient — they have low utilization

Evidence in the Data

To illustrate the data, we built what we call:

The Essity Utilization Matrix™

		Status		
S	_	No Soap	Soap	
Traffic days	Below-average	Sweet spot	Low util.	
	Above-average	Bad service	Sweet spot	

Evidence in the Data

Case Study: Site 32

		Status		
Ś		No Soap	Soap	
Traffic days	Below-average	76 %	24%	
	Above-average	(52%)	48%	

Game plan

Reach for the sweet spots by dynamically shifting 'empty_level' on scu_df

Key Metric: Daily Traffic

Data Preparation

Location 702 Daily Traffic

Prediction Methodology

Data Preparation

- Data set for analysis: dailyCount_df
 - > 5,630 rows
 - Features of interest: LocationId, dailyTraffic, dailyTrafficLag, weekDay, and standardized versions of continuous variables
 - Excluded 7 outliers and rows where dailyTrafficLag = NA (i.e., no record of previous day)
- Split data into train and test sets (80:20)
- Conduct a range of regression and classification analyses

Stepwise / Multiple Linear Regression

- Regression Framework
 - Response: dailyTraffic.scale (scaled)
 - Covariates Location of time, time 2, time 3, daily Traffic Lag1. scale, week Days and interactions $\beta_i \cdot Location Id_i + \beta_i$

Predictive Performance

Out-of-sample R²: 73% Mean Abs. Error: 203

 $\left(\beta_{p+n} \cdot time_n\right) + \beta_{p+4} \cdot \sqrt{dailyTraffic}$

Conclusion: These predictors moderately explain variation in daily Traffic. The linear model provides a starting point for future feature addition.

Multiple Linear Regression

Penalized Regression: Elastic Net

- Regularization framework
 - Response: dailyTraffic (continuous)
 - Covariates: LocationId, dailyTrafficLag, and weekDay

Predictive Performance

Out-of-sample R²: 72% Mean Abs. Error: 218

- Cross-validated parameters: $\alpha = 0.1$, $\lambda = 0.35$
- Poor out-of-sample performance
- Conclusion: dailyTraffic is not well-explained by the covariates in the model

$$\frac{\sum_{i=1}^{n} (y_i - x_i^J \hat{\beta})^2}{2n} + \lambda \left(\frac{1 - \alpha}{2} \sum_{j=1}^{m} \hat{\beta}_j^2 + \alpha \sum_{j=1}^{m} |\hat{\beta}_j| \right)$$

Penalized Regression: Elastic Net

Classification Tree

- Feature engineering: TrafficAboveAvg (binary)
 - If daily traffic at a given location on a given day is above average (relative to that location's performance)
 - Covariates: LocationId, dailyTrafficLag, weekDay

Out-of-Sample AUC 0.7439

Classification Tree

Recommendation

- Classification tree advantages:
 - Easier to implement in the business setting
 - More interpretable
 - Flexible and conducive to tuning

Final Thoughts

- What's next? Our analyses enable Essity to...
 - Expand daily traffic modeling to all 15 major customers
 - Compare claims and wastage relationships among clients
 - Map associations between subscription type, sensor data, and traffic patterns
 - Present easily interpretable classification results to management
 - Use the Essity Utilization Matrix to minimize "Bad service" instances and maximize the "Sweet spots"

Thank You!