Customer Churn Analysis and Prediction

> William Chen Margaret Ji Catherine Ruan

Overview

G	 Use the consumer dataset to: Segment the Fulton Bank customer base Build a model that predicts customer churn
	Agenda
1	Data processing
2	Customer segmentation
3	Feature scoring and predictive model implementation
4	Business recommendations

Data Processing

Numerical/Binary	Categorical	Balances	Missing Totals
Keep columns containing relevant characteristics of customer segments	 Find appropriate level of detail One-hot encode 	 Set missing balances to -10,000 Use smooth symmetric log scaling 	 Fill blank cells with O's or -1's depending on context

Objective Figure out if consumers naturally fall into certain groups Methods Results **Dimensionality reduction** Churn Finding the optimal number of segments Clustering Segment analysis **Behaviors**

Objective

Find a more concise representation of data

Method

- Dimensionality reduction
 - Autoencoder
 - Principal Component Analysis
- Performance analysis
 - Reconstruction loss

Percent of Data Described

Reconstructed Data vs. Actual Data

Objective

Use unsupervised learning to segment customers into groups

Why unsupervised segmentation?

- Cherry picking metrics may not capture nuances in the data
- Unsupervised clustering can cover as much information as possible
- To be understand churn, it is good to first understand its correlation with consumer behavior
- Spectral clustering is best suited for nonconvex geometry

Select best number of clusters based on eigengaps

Perform large scale clustering using KMeans

Examine clustering performance using elbow method

Segment	Characteristics
"Swing by"	Highest churn Lower LTV Lowest average mobile logins Use Venmo/PayPal the least Highest % of closed accounts Lowest number of remote deposits
"Loyal"	Lowest churn Highest number of calls to call center Highest average age in households Highest number of saving accounts Highest % of high income
"Techy"	Highest average mobile logins Highest % Uber/Lyft payments Use Venmo/PayPal the most
"Valuable"	Largest percentage of H-P H-F Highest direct deposit amounts Lowest amounts of check deposits Fulton customer the shortest Younger households (often Gen X) Highest % of middle income
"Active"	Highest average of billpay transactions Highest average (deposit, investment, loan) products in household

Percentage Having Savings Account

Percentage of Having Direct Deposit Service

Business Recommendation: Target Customer Segments

Classify customers into segments to provide customers with targeted Objective recommendations that meet their needs and increase loyalty Servicing Relationship Acquisition Retention Prioritize converting Identify and execute Provide services Build in-depth • "swing by" tailored to the relationships with campaigns targeting customers to other customers with customer's needs customers via segments with lower characteristics of based on segment analytics-based churn low-churn segments personalized traits services Recommend or cross-sell products associated with loyalty

Feature Scoring Procedure

• Which features are giving the most improvements to accuracy in a nonlinear model?

125 Choose 2 = 7750 Columns

Fit 7750 Random Forests (Each column will be in 124 of the models)

Distribution of average accuracies for each model that a column participated in

Scored column as the equally weighted average of the mean, median, 90th percentile, and max of the distribution

Graphed column scores and picked a natural cutoff point

Feature/Column Scoring Results

Top Scoring Columns

Index	name	score	mean	max	90%ile	median
6	STARTPROD	0.891464	0.876033	0.909908	0.899672	0.880242
63	TOTAL_ASSETS_FFC	0.747434	0.693626	0.909908	0.69857	0.687631
82	hascheckingactivity	0.7472	0.701238	0.878022	0.714385	0.695153
7	NEWPROD	0.747086	0.702596	0.856132	0.73875	0.690867
43	BROKERAGEBAL	0.743331	0.692753	0.895055	0.698707	0.686809

Bottom Scoring Columns

Index	name	score	mean	max	90%ile	median
102	tot_calls	0.652	0.571116	0.821033	0.649147	0.566702
10	MOVEDHH	0.653974	0.566885	0.836254	0.648787	0.563971
53	DEP0_SRV_TOT	0.656639	0.620682	0.74392	0.654359	0.607594
15	IRACONSRV	0.657627	0.571767	0.841784	0.649831	0.567124
16	BROKERAGESRV	0.657671	0.567384	0.850581	0.648758	0.563961

Score by Sorted Column Index

Starting Product

Most vs. Least Likely to Churn

STARTPROD	% churn	count
TTAC	1	99
TUNA	1	12
IRAF	0.931148	305
OLB	0.916667	12
CDPB	0.888092	2091
MMPER	0.846154	2964
FTAC	0.843844	333
LCIND	0.814502	12895
MTGS	0.79519	7734
EQOPT	0.795181	581
EQMTG	0.782609	92
BUNP	0.75	12
CKINT	0.74317	22073
тв	0.736864	2398

STARTPROD	% churn	count
FILN	0.00740398	2161
NLCN	0.00598802	167
А	0.0059761	502
HILN	0.00591716	169
FMLN	0.00371747	269
AILN	0.00255754	391
FVCCATM	0.00240096	833
VD	0.00236967	2110
NILN	0.00220751	453
ND	0.000547645	5478
DD	0.000161838	6179
GD	0.000116414	25770
AATMATM	0	46
ΔΟΙΝΔ	0	14

Churn Fraction by Product

Predictive Model Implementation

Method Implementation Notes

- Nonlinear model allows for complex interaction
- By using "class_weight = 'balanced'" in the model, we make sure the accuracy on the kept households and churned households are prioritized equally
- Since there are fewer churned HH, the precision suffers, but this is in line with business intuition of losing
 a customer is more expensive than the cost to keep an existing customer from churning

Churn Model Metrics

	Accuracy-Kept HH	Accuracy- Churned HH	Precision	Recall	F-score
Random Forest (sqrt)	0.867	0.94	0.656	0.94	0.773
Logistic Regression w/ L2	0.408	0.848	0.28	0.848	0.421
Random Forest (all)	0.792	0.991	0.564	0.991	0.719
F.S. Random Forest (sqrt)	0.866	0.933	0.655	0.933	0.769
F.S. Random Forest (all)	0.793	0.991	0.565	0.991	0.72
AdaBoost	0.988	0.92	0.954	0.92	0.936
F.S. Adaboost	0.983	0.922	0.935	0.922	0.928

- Random forest "sqrt" vs "all" refers to checking sqrt(features) or all features at each split
- F.S means the model is run on feature selected data the top 35 rows
- Logistic regression has poor performance, but we may be able to get more meaningful significance data out of it.

Business Recommendation: Utilize Predictive Variables

Objective Use variables for the custo	s most predictive of churn to inform insi mer	ghts and strategies personalized
Understand	Predict	Strategize
 Examine intuition for starting product and other high-scoring variables Improve data tracking to include more of customers product profile 	 Ensure data is robust enough to draw conclusions Use a nonlinear model to predict whether customers are likely to churn 	 Reconsider profitability of high-churn products Encourage customers to switch to or add low-churn products

Conclusion

 Use the consumer dataset Goals Segment the Fulton Bank customer base Duild a model that an edicts customer an abume
--

Recommendations

Customer segmentation

 Use customer characteristics to segment customers, allowing for easier acquisition, servicing, relationship development, and retention of customers

Predictive model

- Predict the likelihood of churn in an individual customer
- Formulate strategies based on a trait's association with high or low churn